

Smart H₂ Energy Platform

Energy independence, Zero-carbon emission

Smart Integration Global Innovation

Since its establishment in 1999, COSBER Technology Co., Ltd. has evolved to be a leading high-tech enterprise in China, with a global presence including R&D and business operations. COSBER has activities and business in more than 50 countries worldwide and maintains offices in China and Germany, with a team of over 300 professionals. At COSBER, we are dedicated to promoting China-German joint innovation and intelligent manufacturing. As part of this commitment, we work proactively to advance the development of the hydrogen energy industry.

COSBER's Smart H₂ Energy Platform is a cutting-edge clean energy solution designed for both residential and commercial buildings. Leveraging our advanced hydrogen technology, this platform provides integrated green building solutions to clients around the world. At COSBER, we believe the Smart H₂ Energy Platform represents more than just a source of sustainable energy - it embodies a transformative new way of living that will lead to a sustainable future.

At Cosber, our vision is to pioneer transformative solutions that shape the future of the energy industry. We envision a world of "green life, zero-carbon emission, caring for the earth" and work hard to drive innovation, sustainability, and prosperity for generations to come!

COSBER Hydrogen · Transform Life

Green Building Solution

Freedom of Energy

Green & Clean Energy

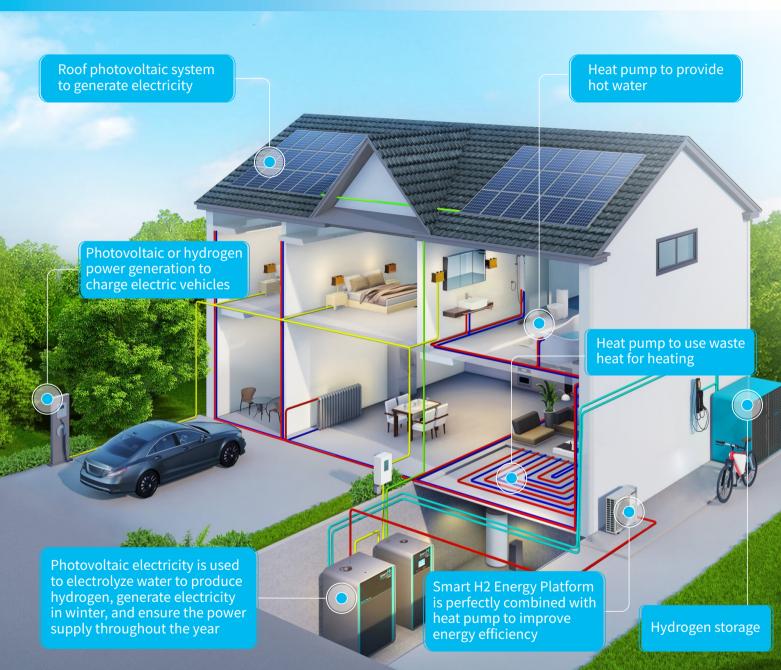
Real Time Response

Zero Carbon Emission

Flexible configuration

Safe & Efficient

The Smart H₂ Energy Platform for Intelligent Energy Storage & Generation


The Smart H2 Energy Platform is an intelligent energy storage and generation system that includes a photovoltaic inverter, water electrolysis hydrogen production system, hydrogen storage system, fuel cell power generation system, auxiliary electric energy system, and a synergy control module. Its working principle is to optimize the use of renewable energy sources, such as photovoltaic or wind power, by converting excess electricity into hydrogen through an electrolytic cell. This stored green hydrogen can then be transformed back into electricity via fuel cell generation for later use.

Smart H₂ Energy Platform

Meet the Various Requirements of Household Scenarios

Residential House

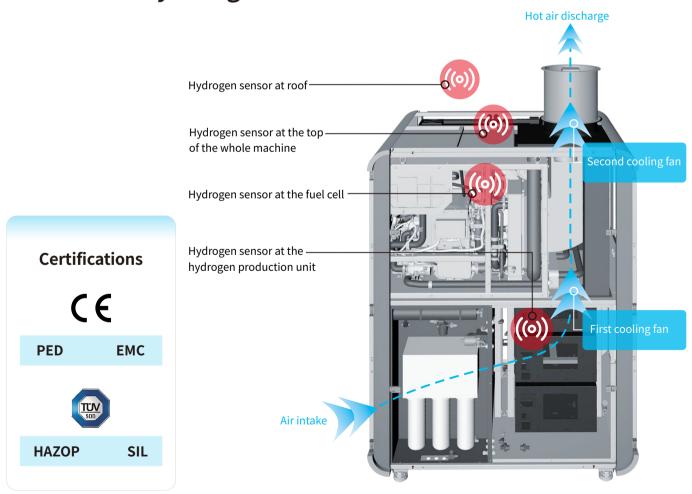
Family energy independence, cross-season energy storage and off-grid power supply.

Smart H₂ Energy Platform

Meet the Various Requirements of Commercial Scenarios

Photovoltaic renewable energy Hydrogen Heat Electricity

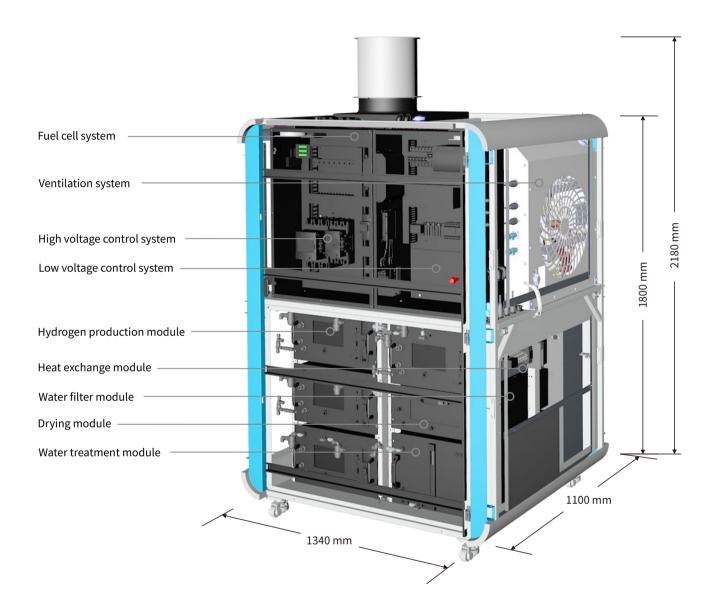
With the goal of global carbon neutrality, enterprises need to reduce carbon emissions and protect the environment. We work together to combat the climate change, reduce global warming, and enhance the social reputation of enterprises.



Hydrogen Power Cube

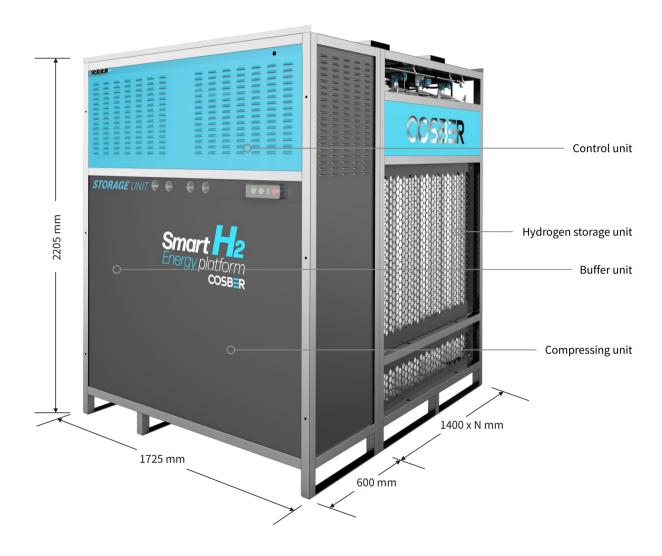
- ▶ Modular design, easy installation and fast delivery.
- ▶ Intelligent integrated control, multi-energy co-generation.
- ▶ Ultra-Security Designs, ensure user safety.

Ultra-Security Designs



Module	ltem	HPC - 1000	HPC - 2000	HPC - 3000	HPC - 4000	HPC - 5000
Energy Sto	orage System (EES)					
	Inverter					
	Inverter type	Energy storage inverter				
004 1 004 1 004 1 008 1	Inverter qty.	1 set	1 set	1 set	1 set	1 set
	Rated input and output power	10 KW	10 KW	10 KW	10 KW	10 KW
	Mains input and output voltage	230 / 380 VAC, 50 / 60 Hz				
a	Battery					
(optional)	Lithium-ion battery type			LiFePO4		
	Battery voltage	40 - 60 VDC				
	Lithium-ion battery rated capacity	30 kWh	30 kWh	30 kWh	30 kWh	30 kWh
Hydrogen I	Poduction and Power Generation Moc	lule				
	Electrolyser (AEM / PEM)					
	Rated hydrogen production rate	0.5 Nm³/h	0.5 Nm³/h	1 Nm³/h	1.5 Nm³/h	2 Nm³/h
	Output pressure	Up to 30 bar				
	Auxiliary electrolyte	1% KOH solution / pure water				
	rated power input	2.4 kW	2.4 kW	4.8 kW	7.2 kW	9.6 kW
	Hydrogen output purity (%)			> 99.99 %		
	Fuel Cell System (FCS)					
	Fuel cell stack cooling	Water Cooling				
	Fuel cell rated power	10 kW				
	Fuel cell system efficiency (%)	\geqslant 45 %, and the operating temperature is 60 - 75°C				
	Control Voltage	48 VDC				
	Fuel cell hydrogen input (%)	> 99.97 %, 6 - 10 bar				
Hydrogen S	Storage System (HSS)					
	Pressurization Cache					
	Compressor	Electric piston pump,working pressure 350 bar				
	Power supply	220VAC/50Hz/1.5kW				
	Buffer tank	4x70 L, with the maximum working pressure of 200 bar				
	Hydrogen Bottle Bundle					
	Hydrogen storage pressure	350 bar				
		Single tank: 110L, working pressure 350 bar, 20 tanks per group				
v	Hydrogen storage tank	Single	e tank: 110L, wor	king pressure 350	0 bar, 20 tanks pe	er group

Hydrogen Production and Power Generation Module



- a. Overall dimensions of Cabinet B: (L x W x H) 1340 x 1100 x 2180 mm, including fan height.
- b. The installation space needs to be reserved: 500mm on the left, right and rear. Reserve 1200mm for the front door.
- c. The upper ceiling height is recommended to be greater than 2600mm.
- d. Total installation space: (L x W x H) 2400 x 3000 x 2600 mm.
- e. The foundation for placing the equipment should be hard and flat ground, and the ground should be able to bear a load of more than 10Kpa.

Hydrogen Storage System (HSS)

(One Standard Group for Hydrogen Storage)

- a. Cabinet C should be installed in an open outdoor place. The place must be equipped with lightning and fire protection facilities.
- b. The foundation for placing the equipment should be hard and flat ground. The foundation should be able to bear a load of more than 30Kpa.
- c. The overall dimensions of Cabinet C are (L x W x H) $1725 \times (635 + 1400 \times N) \times 2205$ mm, where N is the number of energy storage units in the hydrogen tank group. Weight of Cabinet C: $1300 + 5700 \times N$ kg, where N is the number of hydrogen tank group energy storage units.
- d. Installation space to be reserved: front, rear, left, and right 500mm space. It is recommended that users install protective rails around Cabinet C.

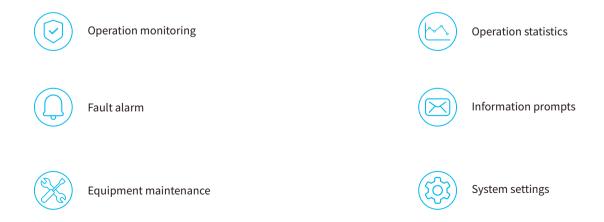
Cosber Smart Energy Management System

Reduction of energy costs and carbon emissions is optimized by advanced AI analytics and automation.

The management system monitors the energy consumption, costs, and carbon emissions. It also displays real-time performance, and demonstrates the energy management achievement with monthly and annual data.

- Carbon emission reduction target setting and carbon emission monitoring
- Monthly energy saving and cost saving report
- Daily / weekly energy consumption warning
- Daily / monthly / annual photovoltaic power generation amount
- Hydrogen production volume and power generation statistics
- Economic income statistics
- One-stop monitor all energy consumption and bill data
- Remotely supervises energy asset

PC Monitoring Dashbord Powered by QEnergy™



The equipment status and data can be automatically monitored and collected.

The working mode can be adjusted automatically or manually: Automatic mode, Sunny mode, Rain/snow mode and Night mode.

APP monitoring

Application Scenario 1: Hydrogen Energy Showroom

"Zero-carbon emission" cottage in Foshan

The "Zero-carbon emission" cottage adopts the Cosber smart Hydrogen energy platform, using the PV from the cottage's rooftop and carport for power generation to produce and store hydrogen. This system can meet the user's demand for electricity, hot water and cooling throughout the year.

Hydrogen Power Cube Model: HPC1000-0010 (0.5Nm³/h)

Heat Pump Model: KSBZ-7D/2A, Heating 2.50~6.95kW, Hot water 1.03m³/h, Cooling 1.20~4.50kW

Energy Storage System (ESS) & Hydrogen Production and Power Generation Module

Hydrogen Storage System (HSS)

Heat Pump

Application Scenario 2: Commercial Office Building

Low Carbon Office Building in Foshan

In this modern commercial office building, the advanced clean energy technology of the Smart H2 Energy Platform is installed to achieve an integrated energy supply solution for photovoltaic, lithium-ion batteries and hydrogen energy. During the day, the electricity generated by the photovoltaic system is directly used to power the building, including lighting, air conditioning, and various office equipment. The surplus electricity is stored in lithium-ion batteries, or used to produce hydrogen by electrolysis of water. The hydrogen can be used to generate electricity at night, and also through the winter.

Hydrogen Power Cube Model: HPC1000-T020 (2Nm³/h)

Lithium-ion Battery: 30kWh x 3

Hydrogen Production and Power Generation Module

Hydrogen Storage System (HSS)

Energy Storage System (ESS)

COSBER Headquarter

8th Floor, Building A, No.28 Dongyang 3rd Road, Danzao Town, Nanhai District, Foshan, Guangdong, China

Website: www.cosberhea.com **LinkedIn:** Cosber Hydrogen

Email (EN): info.hea@cosber.com
Email (DE): hydrogen@cosber.com

